Le Yu 1,2Xiao Xiong 1,2Di Liu 1,2Lantian Feng 1,2[ ... ]Xifeng Ren 1,2,*
Author Affiliations
Abstract
1 Key Laboratory of Quantum Information, CAS, University of Science and Technology of China, Hefei, 230026, China
2 Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
3 Center for Micro- and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei, 230026, China
Higher emission rates and controllable emission direction are big concerns when it comes to finding a good single photon source. Recently, surface plasmons are introduced to this application, as they can manipulate and enhance the luminescence of single emitters. Here, we experimentally achieve a wide-area multiple directional enhanced light source through periodic metal grating structures. The surface-plasmon-coupled emission can have multiple precisely emission angles by just changing the period of the grating. Our result indicates that metal plasmonic grating can be used as a productive quantum device for unidirectional quantum light sources in quantum optics.
240.6680 Surface plasmons 070.0070 Fourier optics and signal processing 
Chinese Optics Letters
2017, 15(8): 082401
Author Affiliations
Abstract
Spin (polarization) is widely used in free-space optics, while in photonic integrated circuits (PICs), information is usually encoded in optical route. So a practical way to connect these two encoding methods is necessary for information communication. In this letter, an encoding convertor is designed to connect spin encoding and route encoding. Finite element method is used to calculate the conversion efficiency and extinction ratio of the encoding convertor and the theoretical analyses are also given. Our protocol shows a friendly way to convert optical spin information to route information, which will promote the compatibility of free-space optics and PICs.
240.6680 Surface plasmons 250.5300 Photonic integrated circuits 230.5440 Polarization-selective devices 
Chinese Optics Letters
2014, 12(7): 072401

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!